Electroacoustic miniaturized DNA-biosensor.
نویسندگان
چکیده
A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.
منابع مشابه
Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.
Laser photoablation of poly(ethylene terephthalate) (PET), a flexible dielectric organic polymer, was used to design an acoustic miniaturized DNA biosensor. The microchip device includes a 100-microm-thick PET layer, with two microband electrodes patterned in photoablated microchannels on one side and a depressed photoablated disk decorated by gold sputtered layer on the other side. Upon applic...
متن کاملRecent trends in electrochemical DNA biosensor technology
Recent trends and challenges in the electrochemical methods for the detection of DNA hybridization are reviewed. Electrochemistry has superior properties over the other existing measurement systems, because electrochemical biosensors can provide rapid, simple and low-cost on-field detection. Electrochemical measurement protocols are also suitable for mass fabrication of miniaturized devices. El...
متن کاملMiniaturized fiber-optic biosensor to monitor asparagine in clinical samples
Asparagine biosensor was constructed by co-immobilized anti-leukemic enzyme (L-asparaginase) and absorptive pH sensitive indicator on to plastic chips of 5mm through hydro sol-gel approach. Asparagine is used as a biomarker for detection of acute lymphoblastic leukemia. In this research work asparagine biosensor was developed focusing on L-asparaginase activity as bioassay principle. L-asparagi...
متن کاملModified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination
Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...
متن کاملA Readout Chip for Miniaturized in Vivo Biosensor Implant
This work presents a programmable read-out chip for a miniaturized multi-parameter in vivo biosensor implant. The chip stimulates the measurement electrodes and reads out the generated analog signals in order to carry out temperature, pH and oxygen measurements. The design process aims at the optimization of the chip programmability and energy efficiency so as to make it suitable for implantabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2007